
M-187-REV-2

MPPL Reference Manual

P. F. Dubois, Z. C . Motteler, P. A. Willmann, R. A.
Allsman, C. M. Benedetii, J. A. Crotinger, D. S. Kershaw,
A. B. Langdon, A. C. Springer, J. Takemoto, L. Taylor, S.
H. Taylor, S. S. Wilson

July 1,2002

U.S. Department of Energy

Lab ora tory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

M-225

MPPL Reference Manual

Paul F. Dubois
Zane C. Motteler

Peter A. Willmann
Roberta A. Allsman

Cathleen M. Benedettj
James A. Crotinger
David S. Kershaw
A. Bruce Langdon
Allan C. Springer
Janet Takemot o

Lee Taylor
Susan Hockett Taylor

Sharon S. Wilson

July 1, 2002

DISCLAIMER

This document was prepared as an account of work sponsored by a n agency of the United States Government. Neither the United
States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process
disclosed, or represents t h a t its use would not infringe privately owned rights. Reference herein t o any specific commercial products,
process. or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or t h e University of California, and shall not
be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
W-7405-Eng-48.

@Copyright 1988 by the Regents of the University of California. All rights reserved. This work was produced under the sponsorship

of the U.S. Department of Energy. The Government retains certain rights therein

2

Contents

1 MPPL Reference Manual 5
1.1 A More Productive Programming Language 5

1.1.1 MPPL is a Fortran Preprocessor 5
1.1.2 MPPL’s Three Stages . 5
1.1.3 Read the Sample Programs First 6

1.2 Execution . 6
1.2.1 Availability . 6
1.2.2 Specifying Input and Output Files 7
1.2.3 Specifying Options . 7

1.3.1 Token Descriptions . 10
1.3.2 Processing Traditional Comments 11
1.3.3 Free-Form Input . 12

1.4 Macro Processing . 12
1.4.1 Basic Features of the Macro Processor 12
1.4.2 Macro Names . 13
1.4.3 Argument Collection . 13
1.4.4 Macro Expansion . 13
1.4.5 Macro Translation . 14
1.4.6 User-Defined Macros . 16
1.4.7 Built-in Macros . 17
1.4.8 Error Messages . 22

1.5 Statement Processing . 22
1.5.1 Cautions on the Use of Keywords 23
1.5.2 Symbols for Logical Operators 24
1.5.3 Multiple Statements on a Line 25

1.6 Looping Constructs . 25
1.6.1 DoLoops . 25
1.6.2 While Loops . 26
1.6.3 Leaving and Skipping . 27
1.6.4 Module/Return Statements 28
1.6.5 Conditional Statements . 28

1.3 Token Processing . 10

3

1.6.6 Case Selection Statement . 30
1.7 Sample Input File Showing M.ajor MPPL Features 31 .
1.8 Examples of Advanced MPPL Macro Usage 36

1.8.1 Specifying a common block 36
1.8.2 Conditional compilation . 36
1.8.3 Vector operations . 37
1.8.4 Alphanumeric Labels . 37

1.9 Migration to Fortran 90 syntax . 38
1.9.1 Command Line Options . 38
1.9.2 Statement Processing . 38
1.9.3 Macros . 38
1.9.4 Loop Constructs . 39
1.9.5 Leaving and Skipping . 40
1.9.6 Case Selection Statement . 40

4

Chapter 1

MPPL Reference Manual

1.1 A More Productive Programming Language

1.1.1

MPPL (“More Productive Programming Language”) allows programmers to write
in a language that is more convenient and powerful than Fortran 77. MPPL then
transforms statements written in the MPPL language into standard Fortran 77. This
language is essentially an extension t o Fortran 77 that provides free-form input and
many structured constructs such as “while” and c‘f~r’7 loops. MPPL’s macro pre-
processor and file-inclusion facility encourage the creation of structured, easy-to-read
programs that contain fewer labels. MPPL provides a more productive programming
environment for Fortran 77 users on the Unix, Linux, AIX, IRIX, Solairs, HP-UX,
Tru64 operating systems.

MPPL is a Fortran Preprocessor

MPPL can be used independently as well as with Basis.

1.1.2 MPPL’s Three Stages

During execution of MPPL, data flows through three ordered steps, or levels. The
first level is the token processor; it reads the user’s source code and divides it into
“tokens”, such as names, quoted strings, and punctuation marks. The second level
is a macro preprocessor; it takes alphanumeric tokens that the user has defined as
macros and replaces them with appropriate text. The third level is the statement
processor; it reads tokens after they have been processed by the macro processor.
Then the statement processor forms Fortran 77 output text, translating some higher-
level programming constructs as it does so.

For most applications, a detailed understanding of the operation of MPPL is not
required. The MPPL language is nearly upward-compatible with Fortran 77. The

5

higher-level programming constructs may be added to existing programs, or not, as
the user chooses. MPPL does allow complicated macro definitions, but. the basic
usage is very simple:

define macroname expansion

causes subsequent appearances of the symbol macroname to be replaced by the rest
of the line on which the define statement occurs.

The user can supply macro arguments like a function call, with the arguments in
parenthesis and delimited by commas. The arguments are inserted into the expansion
of the macro wherever the definition has a dollar sign followed by an argument number.
Thus, an input of

define Pop
Pop (k , n>

$1 = $1 - $2

yields the statement

k = k - n

The macro processing facilities are similar to the Unix macro processor m4. The
higher-level language facilities are inspired by the C language and the Unix utility
Ratfor.

1.1.3 Read the Sample Programs First

Most users will find it suffices to read the next section to learn how to execute
MPPL, and then read the MPPL program examples in section 1.7, referring as nec-
essary to the syntax summaries in the Appendix. A more thorough understanding
of the MPPL program can be postponed to the day when MPPL does something
unexpected.

1.2 Execution

1.2.1 Availability

MPPL is available as /usr/apps/basis/bin/mppl at the Secure Computing Facil-
ity, the Open Computing Facility, and the A division networks. See http://basis.llnl.gov

6

http://basis.llnl.gov

1.2.2 Specifying Input and Output Files
To execute MPPL, the user specifies the Rles to be processed: '

mppl file1 file2 . . . filen

The names of the files that MPPL is to translate are delimited by spaces. Output

A typical mppl-compile-load sequence is:
is written to standard out.

mppl mymacros mys0urce.m > my0ut.f
f77 my0ut.f -0 xec

If MPPL is executed without a list of files it reads from standard input allowing
it to be used as a filter.

Many mistakes in syntax will be caught by MPPL, such as missing "endif I ' state-
ments, but compilation mistakes are possible since MPPL does not check all Fortran
syntax.

1.2.3 Specifying Options

Options are entered first on the command line. Options and filenames may not
be interspersed. If no files are given, or if a " alone is given, MPPL reads from stdin.
All output is written to stdout, and error output to stderr.

- N Where N is a 1-5 digit integer, specifies the beginning value for MPPL-generated
statement labels. The value should be chosen to prevent duplication of existing
labels in your code. MPPL restarts the sequence in each subroutine. The
default value of N is 23000.

-b Turn off the output of blank lines and comments. The default is to pass blank
and comment lines to the output.

-c string Set the column 1 comment character to be any of the characters in string
(up to three characters may be specified). The default value of this option is
cc*.

-Ccompiler Specify the compiler to be used on the MPPL output. This sets the
macro COMPILER to have the value compiler.

-d Convert literal character constants enclosed with quotation (") characters to For-
tran 77 standard constants using the apostrophe character (') for quoting.

-Dname[=defl Define the macro name to have the value def, as if MPPL had read
the statement

7

def ine name def

This option may be repeated. Careful quoting is required t o embed blanks into ’

d e f :

-Dname=”’this i s a s t r i n g ” ’

is typical.

-f Set free-form input. This disables the usual column 1 comment convention and
the column 6 continuation convention. MPPL # comments may still be used in
any column. If you only want to disable the column 6 continuation convention,
specify a -ccC* (or similar -c option) after the -f option.

-i N Set the In t ege r s i ze to N. Legal values are 2, 4, or 8, and imply that an
integer variable without kind-selector, or literal integer constant will be stored
in at least 2, 4, or 8 bytes, respectively.

-I directory Insert directory into the search path for include files. Usage is similar
to the UNIX C preprocessor. For instance, the options

- 1 . . - I /us r / loca l /vbas is /pkg

tells MPPL to search the parent directory and /us r / loca l /vbas is /pkg for
include files, in addition to the current directory. The current directory is
always searched first.

-1 (ell, for “long”) Set the length limit for output lines to 80 instead of the standard
72 columns. This limit does not apply to comment lines.

-m Prevent MPPL from activating the Basis definitions. Non-Basis users of MPPL
should use this option if problems develop from the Basis definitions.

-Mmachine Specify the machine we intend to compile on. This sets the value of the
macro MACHINE to machine, and may affect the definition of other predefined
macros.

- r N Set the RealSize to N. Legal values are 4, 8, or 16, implying that a real variable
with no kind-selector or literal floating point constant of the form 0. OeO will
be stored in an element of at least 4, 8, or 16 bytes, respectively.

-t Sys Set the intrinsic macro SYSTEM to Sys, and set the value of other intrinsic
macros to the default values for the system named. This allows you to “cross-
compile” source for a Fortran compiler on another system. This option sets
the macros MACHINE, COMPILER, TYPE, CHAR-PER-WORD, LOCS-PER-WORD, and
WORDSIZE to the defaults for the target system. Use the -C, -D, or -M options
to over-ride these defaults as required.

8

-u Provide “case insensitivity” for macro names. Either all upper or all lower case
(not a mixture) may be used to invoke a macro. This option is required if
Fortran keywords in your source code are in upper case.

-v Turn on verbose output. Note each input file as it is processed.

-w Turn on extra warning messages. In particular, warn if Size requests cannot be
satisfied in the given target compiler. E g , if the compiler has no 16 byte wide
floating point type, then a request for a Size16 real object will be mapped into
Size8, and, if the flag was given, a warning message will be printed to stderr.

--langf 77 Convert mppl language macros into Fortran 77. (default)

--langf90 Convert mppl language macros into Fortran 90. The output will be free
source form.

--nolang Do not convert mppl language macros.

--nonumeric do not convert numbers from f90 format (l.Osize8), do not process -r8
or -r4 macros (1.0e00 will not be converted to 1.0d00) and do not read mppl.std
which define integer, real and other related macros.

--macro Expand macros. This is the default behavior.

--nomacro Do not expand macros.

--pretty Pretty print i.e. indent lines. Each level of indention uses the continuation-indention
value. This is the default.

--nopretty use existing white space.

--relationalf 77 convert conditions t o use f77 relations operators (.eq., .ne., ...)
This is the default behavior.

--relationalf 90 convert conditions to use f90 relations operators (==, /=, ...)

--honour-new-lines --honor-new-lines -hnl preserves existing line breaks with
--pretty option.

--continuation-indentionn -cin The width to indent blocks and continued lines.
Defaults to 3.

--comment-indentationn -comi The column to start embedded comments (com-
ments using the # character). This is only valid with --langf90

9

The -m option, which must occur before the name of the first input file, prevents
MPPL from activating the Basis definitions. Non-Basis users of MPPI, should use
this option if they find any problems develop from this change. Chances are pretty
good that this is not really necessary, since if one of your own definitions collides with
the built-in one i t will replace it. To see the Basis definitions, run MPPL interactively
and enter Dumpdef. Each pair of lines printed are a keyword and its definition. The
keywords are:

CHAR-PER-WORD COMPILER DEFAULT DONE DYNAM Dumpdef Dynamic ERR FALSE
Filedes Filename GENERATE LOCS-PER-WORD MACHINE Module NO NOTSET
Number-of-Database-Words OK Pi Point Prolog
Quote SITE SLEEPING STDERR STDIN STDOUT SYSTEM TRUE TYPE
UP Use VARNAME WORDSIZE YES
-integer -real -complex -logical -character Ch -Ch -double -Filename
- Filedes -Varname
SS-WIDTH SS-N SS-TC SS-PTR SS-NAML SS-NS SS-Nl SS-Ml SS-I1

1.3 Token Processing

The first internal operation that MPPL performs is the collection of data units,
or “tokens”. Tokens, or strings of characters, are collected one a time. Some are
passed directly to MPPL’s output or “translation”, and some are checked to see if
they require expansion.

1.3.1 Token Descriptions

Alphanumeric An alphanumeric token is any sequence of letters and digits that
begins with a letter. The underscore character (-) is treated as a letter.

Digits Tokens can be any one or more digits, 0-9.

Real Numbers Tokens can be Digits followed by a decimal point and exponent.

White Space Tokens can be any sequence of blanks and/or tabs.

Quoted String Tokens can be made up of Hollerith constants or Fortran strings in
either single (I) or double quotes (I1). The same type of quote mark can be
used inside a quoted string if the marks are doubled. Or the opposite type of
quote may appear.

10

Comment Everything between a pound sign (#) or an exclamation point (!) and
the end of the physical line is a corqment. MPPL changes the first character to
a lowercase c and writes the token to the output IMMEDIATELY. A new token
is then collected. This means that a special method must be used to include
comment lines in macro definitions. Refer to the description of the Immediate
macro in “Macro Processing’, below.

Logical Operators . e q . .

Multiple Character Operators exponentiation (**) and concatentation (//).

Any Other Single Character For example, a decimal point is a token. Note, how-
ever, that MPPL ignores (and discards) the backslash (\) and collects another
token. If the last non-whitespace token on a line is a backslash, MPPL continues
the line. The backslash is useful for separating units that must be interpreted
separately, but which the user wants adjacent in the output.

“Newline” The invisible “return” character at the physical end of a line of input
text is recognized as a token we call “newline”. In two cases, however, MPPL
discards newline so that two or more physical lines can become one logical line:
the column-6 continuation (the Fortran continuation convention) and assumed
continuation.

In the Fortran continuation, the newline token and the first six characters of the
next line are discarded if the next physical line begins with five blanks followed by a
non-blank character.

Assumed continuation occurs when the last non-whitespace token on a line is
+, -, *, (, comma, &, I , ^., >, < , = or \. The user may conveniently con-
tinue a long quoted string by adding a backslash to a concatenate operator (//), for
example:

x = “This is a long string”//\
“divided into two parts”

Note that MPPL does not treat the forward slash (division) character as an obvi-
ous continuation because the forward slash is the final character in DATA statements.

1.3.2 Processing Traditional Comments

MPPL recognizes c , C , or * in column 1 of a physical input line as a standard
comment line, and writes the entire line immediately to the compiler-ready output.
The list of characters that signal comment lines may be altered by means of the -c
(“minus c”) option described above in “Specifying Options.”

11

1.3.3 Free-Form Input
MPPL ignores positioning of statements on a line except for the column-6 contin-

uation convention and the c, C o r * in column 1, the comment-line indicator.

1.4 Macro Processing

1.4.1 Basic Features of the Macro Processor

The second internal operation that MPPL performs is to replace the alphanu-
meric tokens the user has defined as macros with the appropriate text. The macro
preprocessor collects any macro arguments, performs macro expansion and transla-
tion, generates labels, and then passes translated text to the statement processor.

MPPL macros have the following features:

0 Recursivity (a macro can call itself).

0 Easy-to-read, functional syntax resembles Fortran.

0 Built-in conditional statement.

The built-in macros MPPL has are:

define(name,translation)
define name translation
Undef ine ([name]
ifdef ([a] , b, c)
if else (a,b c ,d)
Errprint(message)
Infoprint(message)
Dumpdef ([macronamel
Immediate (argument)
Evaluate(argument)
Remark(message1
Setsuppress(name,char)
include filename
Module
Prolog
SYSTEM

The MPPL define macro lets users define their own macros. Macros have many
uses; they can:

12

0 Give symbolic names to constants, so global changes need be made in only one
place.

0 Conditionally compile blocks of code.

a Abbreviate or customize the language of frequently used blocks of coding where
a subroutine call is not desired.

0 Improve readability of the code to make its structure and purpose more obvious.

1.4.2 Macro Names
A macro name can be a string of alphanumeric characters (upper case and lower

case letters, digits, and the underscore character) of any length. Note that the macro
processor is sensitive to case. N and n are recognized as different names. The -u
command line option can override this behavior.

1.4.3 Argument Collection
If a macro has arguments, the macro name is followed by a left parenthesis. Ar-

guments are separated by commas and the argument or argument list is terminated
with a right parenthesis. Commas within the second or deeper levels of parentheses,
or inside square brackets, are ignored. Each argument in turn is collected, and each
alphanumeric token is scanned to see if it is a macro. In the following example, the
define macro has just two arguments, I1 Jack” and Jill (went, up , hill) ”:

define(Jack,Jill(went,up,hill))

If a macro name has been specified in a Setsuppress macro, then argument
collection is supressed.

1.4.4 Macro Expansion
Because macro names are alphanumeric tokens (as defined above), every alphanu-

meric token must be checked. If a token is a macro name, its arguments (if any) are
collected, and the expansion of the macro is “pushed back” onto the input file to be
rescanned for tokens as described earlier in “Token Processing.”

Square brackets are most often used around the arguments to macros. Macro
expansion can be delayed by placing the macro name in one or more pairs of square
brackets. Each time brackets are encountered, the outside pair is stripped off. For
example:

define N 100
CN1 = N

13

translates to

N = 100

In a second example, in line 2 below, the N is expanded to 1 2 when arguments are
collected, so the first argument does equal the second. In line 3, the first argument is
N, and the second argument is 12.

define (N 12)
if else (N 12 true f alse) = true
if else (CNI 12 true false) = false

1.4.5 Macro Translation

When a macro is invoked in the code, it is translated using information from the
macro definition. The following substitutions are made:

0 Argument substitution ($n).

0 Replacement of $*.

Replacement of $-

0 Label generation (@n).

Argument Substit ut ion

Any dollar sign followed by a digit 1-9 in the argument list in the define statement
is replaced by the corresponding macro argument: $1 is the first argument, $2 the
second, etc. $0 is the name of the macro being expanded.

A dollar sign followed by an asterisk or a minus sign, is treated as explained below.
A dollar sign followed by another dollar sign results in the insertion of a single dollar
sign into the expansion text. A dollar sign followed by any other character results in
the insertion of that other character into the expansion text.

define distance sqrt(($l-$3)**2 + ($2-$4)**2)
w = distance(xlyyl,x2,y2)

expands to

w = sqrt((xl-x2)**2 + (yl-y2)**2)

14

Replacement of $*

The complete argument list, separated by commas, is generated. Thus, if we
define Jill as

def ine J i l l h i l l ($ *) - $1

then the macro statement in the code

J i l l (up,down)

is translated as

hil l(up,down) - up

Replacement of $-

The argument list minus the first argument is generated. This can be used to define
macros with an arbitrary number of arguments that process the first argument and
then call themselves recursively to process the remaining arguments. For example:

def ine Product $1 REST($-)
def ine REST i f e l s e ($ l , , , [* $1 REST($-) 1)
w = Product(x,y,z)
q = Product(x1

which expands to

w = x * y * z
q = x

The i f e l s e macro is explained below; the result is simply to terminate the recur-
sion when there are no more arguments left. This is a hard example, but we present
it because of the usefulness of the idea.

Label Generation

The combination of an at sign (Q) followed by a digit 1-9 is replaced by an au-
tomatically generated label number. Each occurrence of @n is replaced by the same
number within a particular expansion of the macro. The first number assigned is the
next number in the automatic label sequence, as described in “Execution: Selecting
Options.”

In the following example, square brackets protect the second argument of the
define macro from token interpretation as it is collected. The expansion of the macro
named Error i f 0 is given below. It is good practice to use the brackets. They usually
produce the desired results, but in this case, they are not really necessary.

15

define (Errorif 0, [
if ($l.ne.O) go to @1
write (6, @2)

@2 format("$l is zero.")
return

@I continue
1)
Errorif 0 (x)

expands to :

if (x.ne.0) go to 23000
write (6,23001)

23001 format ("x is zero")
return

23000 continue

When a macro is expanded, quoted strings do not protect any arguments (e.g.,
$1, $2) inside them. But when a quoted string is seen by the token processor, macro
names inside will not be recognized by the macro processor.

1.4.6 User-Defined Macros

Users define a macro with the built-in MPPL macro define. The two forms of the
define macro are:

define macroname expansion
define(name,expansion)

In the first form, the next token after the define is taken as the macro name.
After skipping over any space following the name, MPPL takes the rest of the line as
the expansion. Neither the name nor the expansion is scanned for further macros to
expand.

In the second form, a define macro with arguments looks like a Fortran function
call. The arguments are in parenthesis separated by commas. This form is treated
like a normal macro invocation; the arguments are scanned as they are read. If name
is already defined then to redefine it using the second form one must surround name
with square brackets so that i t is not expanded as it is read.

If name has already been defined, the old definition is forgotten. A macro name
can be forgotten altogether with the Undef ine macro.

16

Undefine([name])

The Undefine macro deletes the definition of a macro name. Note the required
square brackets to prevent the name from expanding before we get a chance to Un-
define it!

1.4.7 Built-in Macros

In addition to the define macro, the other predefined macros in MPPL are ifdef,
ifelse, Errprint, Dumpdef, Immediate, include, COMPILER, SYSTEM, MACHINE,
SITE, TYPE, Prolog, Errprint, Infoprint, and Module. The functions they perform
cannot be accomplished with user-defined macros.

In addition, the higher-level constructs in MPPL are actually implemented as
built-in macros. For example, there is a macro whose translation is a special non-
printable character that is interpreted at the statement level.

The built-in macros are described below.

ifdef Macro

is replaced by either b or c, depending on whether a was defined or not. It becomes
b if a is a defined macro name, and expands to c if a was not a defined macro name
(provided c is given). The name a needs to be protected with square brackets. For
example,

ifelse Macro

If the first argument is identical to the second, the ifelse macro,

if else (a, b, c ,d)

is replaced by the third argument. Otherwise, it expands to the fourth argument. The
second argument b can be of the form bl I b2 in which case, the equality is satisfied
if a is identical to bl or b2. Using the notation above, ifelse(a,b,c,d) is read
as "if a = b, then c else d." In making the comparison, leading and trailing
spaces in a and b are ignored. An example of this macro is

17

define Dim real $1 [I if e k e ($2, , , ($2)
Dim(x>
Dim(y , 100)

which expands to

real x
real ~ (1 0 0)

The pair of square brackets in the definition of Dim is used as a token separator,
so that ifelse will be recognized after the name is substituted for $1.

Errprint Macro

The Errprint macro immediately writes the argument to the user’s terminal in the
form MPPL:message and a bell rings. This message goes to the terminal, not to the
output file. The syntax is

Errprint (message)

Infoprint Macro

The Infoprint macro immediately writes the argument to the user’s terminal in
the form MPPL:message and a bell rings. This message goes to the terminal, not to
the output file. The syntax is

Inf opr int (message

Dumpdef([macroname])

If Dumpdef has no arguments, all macro definitions are displayed to the terminal.
If there are arguments, the definition of each macro name given is written to the
terminal. The macro name needs to be protected from expansion during argument
collection by square brackets, as shown.

Immediate (ar gument)

Because the token processor writes comments out immediately, the Immediate
macro is the best way to delay writing a comment line until it is wanted. For example,

define A-comment Immediate(Cc this is a comment])

18

is written out as

c this is a comment

when the translation for A-comment is rescanned. The argument of the Immediate
macro is immediately written directly to the output file as a separate line without
further interpretation. Note the square brackets surrounding the text of the above
Immediate. They are recommended in order to suppress the expansion of any macro
name, or MPPL reserved word, that might inadvertently been included in the com-
ment.

Comments beginning with "*" , "#'' , and "!" are discarded from macro text upon
expansion.

Remark(argument)

The remark macro is used to insert a comment into the code. A limitation of using
Immediate to insert comment occurs when switching from generating f77 fixed-form
to generating f90 free-form. Remark will use the correct comment convention based
on the --langf77 and langf90 command line options.

For example,

define A-comment Remark([this is a comment])

is written out as

c this is a comment

when using the --langf77 option; and,

! this is a comment

when using the --langf90 option.

Evaluate(argument)

Evaluate calculates the value of the integer expression represented by argument
and returns the character form of the result. If argument is not an integer expression
then Evaluate returns argument itself. Example:

define N 22
define (NPl , Evaluate (N+l))
define (NPlS, Evaluate (N + 1.0))
x = NP1
y = NPlS

19

expands to

x = 23
y = 22 + 1 .0

Note that in the expression for y, Evaluate (N+l. 0) resulted in a call to Evaluate
with argument "22 + 1.0" (since the argument was scanned for macros as it was
collected), and since this was not an integer expression, Evaluate returned it verbatim.

include filename

The include macro inserts the contents of filename into the input stream. The
statement causes the named file to be read before continuing to read the current input
file. The included file may itself contain other include statements, t o a depth of five
files.

Setsuppress(name,char)

Setsuppress is used to suppress argument collection for a macro when it is followed
by a specific character.

def ine Realsize Size4
def ine (r e a l , \
[i f e l s e (Reals ize , Size4, [[rea l] ([$*I 1 , [[dble l ([$*I 1 1 \
1

r e a l (b)
rea l*8 f o o
Setsuppress ([r ea l l , [*I)
rea l*8 f o o

expands to

r e a l (b)
r e a l () * 8 foo

rea l*8 f o o

The Setsuppress macro prevents the r e a l macro from being expanded when
used in the rea l*8 context.

20

CHARPER-WORD

CHAR-PER-WORD evaluates to the number of characters per machine word.
Present machines have either 4 or 8 characters per word.

COMPILER

COMPILER evaluates to the name of the Fortran compiler we are planning to
use.

LO CS-PER-WORD

LOCS-PER-WORD evaluates to the number of locations per machine word. Present
machines have either 4 or 1 locations per word.

MACHINE

MACHINE evaluates to the name of the machine we are planning to use.

Module

Module evaluates to the name of the current subroutine, function or program
module. It evaluates to ? if between modules or if in a main program which does not
contain a program statement.

Prolog

After each subroutine, function, or program statement, MPPL adds a line con-
taining the statement Prolog. Prolog is predefined to be simply a comment. The user
may redefine Prolog in order to include certain statements in every subroutine and
function, such as:

define Prolog implicit integer(a-z)

SYSTEM

SYSTEM evaluates to the name of the operating system on which MPPL is being run.
Currently available systems include AXP,LINUX,LINUXA,HP7OO,SGI,IRIX64,SOL

21

WORD SIZE

WORDSIZE evaluates to the length of a word in bits. Currently available word-
sizes are 32 and 64.

1.4.8 Error Messages

MPPL error messages are written both to the terminal and to the output file.
Where possible, MPPL tries to continue processing after an error (e.g., an endif
statement with no matching if statement). MPPL tries to begin again at the next
physical line. As is common in such cases, one error may cause several error messages
because the first error confuses MPPL.

Errors in the macro processor are often extremely difficult to handle, and many
of these errors cause MPPL to halt immediately. Since the higher-level constructs
are macros, mistakes involving their keywords can lead to errors that are reported as
errors in the macro processor. For example, a missing right parenthesis in a return
statement

return(va1ue

leads eventually to an error as MPPL proceeds to eat up text looking for the end to
the argument list for return. MPPL tries to help in this case by informing you that it
was collecting arguments when the error occurred, and naming the macros involved.

1.5 Statement Processing

In statement processing, the third internal process, MPPL collects Fortran state-
ments and writes them to MPPL’s output file in standard form. During this operation,
MPPL indents do loops and if-then statements, and continues long lines using the
column-6 convention.

Another major part of statement processing is the transformation of the nonstan-
dard constructions listed below into standard Fortran:
Looping Constructs

do ; . . . ; enddo
do ; . . . ; until (condition)
while ; . . . ; endwhile
for(initial, condition, reinitial); . . . ; endfor
break (or break n>
next (or next n)

22

Module Declarations and Function Value Return

subroutine, program or function
return
return (value)
end

Conditional and Case Statements

if(condition) then; . . . ; else ; . . . ; endif
if (condition) re turn (value
select(expression) case default endselect
symbols for logical operators: >, <, >=, <=, <> o r -=, = or ==

Free-Form Input

; is a logical newline
and ! begin comments
Automatic continuation if line ends in +, -, *, comma,

...
(, &, I , ,=,>,<

These extensions to the Fortran language allow the user to write programs with
clearer structure and meaning, and t o reduce the use of goto statements and labels.

The keywords listed above are macro names that are translated to special non-
printable characters recognized by the statement processor. When using these macro
names, it is important to be aware of the considerations discussed below.

1.5.1 Cautions on the Use of Keywords

No Spaces in Macro Names

Do not include spaces within the names. Like all macro names, they cannot be
separated internally. The statement

d o 100 i = l,n

is not recognized as a do statement in MPPL, even though standard fixed-form For-
tran allows the space. The user may separate end do, end while, end for, end if,
and end select, however.

Error If Name Out of Context

These macro names cannot be used in other contexts (e.g., a variable named do
is incorrect). If misplaced in the input, these macro names cause an error message,
usually “Unprintable character or misplaced keyword in output.”

23

How the Statement Processor Sees Keywords

An expression in parentheses that follows one of these macro keywords is macroex-
panded during argument collection, and is rescanned in cases where the argument is
supplied. For instance, the built-in definition of if is not just a special nonprint-
able character X, but rather is X($l). Understanding the way the keywords are seen
internally is important, as the next example shows. Given

define n x
define x 10

then

if ([n1>9> goto 70

translates to

if(lO.gt.9) goto 70

but

if ([[n11>9) goto 70

translates to

if (n.gt .9) goto 70

Protected Token Interpretation

The user should protect keywords with square brackets inside macro definitions
t o prevent early interpretation. For example,

definekero-out,do i=l,n;$l(i)=O.;enddo)
zero-out (XI
zero-out (y)

will result in two do loops with the same label. Instead, t o obtain the correct result,
write the definition as

define(zero-out, [do i=l,n;$l(i)=O;enddoI)

1.5.2 Symbols for Logical Operators

In the if, for, while, and until statements you can use symbols for the standard
logical operators (e.g., < for .It., > for .gt .). The complete list of acceptable symbol
substitutions is given below in “Conditional Statements.”

24

1.5.3 Multiple Statements on a Line

MPPL treats a semicolon (;) as a logical newline only. Note that column-1 conven-
tions only refer to physical lines. Thus, in this example, a c that follows a semicolon
is not the start of a comment. Also, as shown here, a label is allowed in the middle
of a line:

X=O ; C=O; 100 format (i5)

Of course, just because you can do something doesn’t mean you should.

1.6 Looping Constructs

1.6.1 Do Loops
do i = l ,n;. . .;enddo

The do-enddo construct is available in addition to the traditional do loop of the
form

do 100 i = 1,n
100 continue

The user omits do-loop labels (100 in the example above) and MPPL supplies
them during creation of compiler-ready output. The user may specify the lowest
number with which MPPL begins numbering (the default is 23000; see “Execution
Options”). The syntax is

do i=l,n

enddo
. . .

The numbering sequence restarts at the beginning of each module.

do/enddo

MPPL allows a do/enddo loop without a variable, which is a “do forever” construct
with the form

do
. . .
enddo

25

In this construct, MPPL generates a labeled continue statement on the do line, and
replaces enddo with a go to statement transferring back to thatJabe1. The user must
provide an exit within this loop by means of a go to statement, a return statement,
or a break statement. The last three statements are explained later in this section.

,

do/until

The user may also select the do/until construct, which causes the loop to repeat
until the condition given is true:

do

until (condition)

Note that the body of this loop is always executed at least once.

1.6.2 While Loops

A while loop allows the user to repeatedly execute a block of statements while
the condition remains true (e.g., while an error is too large, or a desired element has
not been found in a table). This statement replaces the traditional do loop with an
if-test/goto inside it. The condition is tested at the top of the loop:

while (condition)

endwhile

For Loops

The for loop (modified from the for loop in the C language) is a versatile construct
that handles many problems not suited to processing by ordinary looping constructs.
It is useful for loops in which the changing element is not merely incremented, but
rather may be a call to a function, multiple statements, or another nonlinear process.
Note the use of commas instead of the semicolons used in C. The second argument,
the condition, must always be given. The third argument is optional.

for(initial,condition,reinitial)
. . .
endf or

26

MPPL translates the construct as shown below. First, the initial clause is exe-
cuted, and then the condition evaluated. If the condition .is true, the body of the loop
is executed. Then the reinitial clause is executed, and the condition reevaluated. The
loop terminates when the condition becomes false.

initial

L2 reinitial
L3 if (.not. (condition))go to Ll

go to L3

. . .
go to L2

L1 continue

The first and third arguments may contain multiple statements, and the first
argument can be null, for example,

for(,n<lO,n=n+l)

endf or
i = i + n

1.6.3 Leaving and Skipping
break

The MPPL break statement can be used inside any of the looping constructs
discussed above. It is invoked in any one of three forms:

break
break (n)
break n

where n is an integer that specifies the number of loops from which a breakout is
desired. The break statement translates to a go to L statement, where L is the
supplied label of a continue statement that follows the end of the loop. If n > 1, the
transfer is to the end of the n’th enclosing loop, e.g.,

do i = 1,lO
do j = 1,lO

enddo
if (x(i, j) .eq.O)break 2

enddo

Here, the break 2 statement causes a transfer out of both loops. If the 2 is
omitted, transfer would be just out of the j loop.

27

next

The next statement can also be used inside any of the looping constructs. I t

The slight differences in implementation for each kind of loop are shown below:
causes the next iteration of the loop to begin.

Type of Loop Go to:
Traditional do loop labeled statement
Label-less do loop enddo
do/enddo, do/until do
while/endwhile while
for/endfor reinitial

Note that, in each case, the transfer is t o the top of the loop. However, the labeled
loops go t o the label to increment the variable. In traditional loops, where the labeled
statement is not continue, the labeled statement is executed, which may be surprising.
Note also that the do/until loop executes the loop body at least once after the use
of a next statement.

1.6.4 Module/Return Statements

Modules may begin with standard program, subroutine, or function statements.
These three words are MPPL macro names so that MPPL can issue good error mes-
sages and so that functions can return a value from a function in a more natural
way.

Inside a function, the user may provide an argument to the return statement:

re turn (value)

MPPL expands this to

functionname = (value)
return

It is an error to use an argument with the return statement inside a program module
or subroutine module. In that case, MPPL displays an error message, but continues
execution. A statement of the following form is allowed:

if (condition) return(va1ue)

1.6.5 Conditional Statements

MPPL supports all the standard if and if -then-elseif -else-endif constructs
of Fortran 77. It also adds some extra features to these statements.

28

Symbol Substitution

In addition to processing Fortran 77 forms of the if statement, MPPL allows
the user to enter the following symbols for equals, greater than, etc., instead of the
traditional notation.

User enters translation
>
>=
<
<=
- - -
<>
..,

. gt .

. ge .

.It.

. le.

.ne.

. ne.

.not

. eq.

. eq.

if(condition) enhancement

MPPL also allows placing the last part of an if(condition) statement on a new
line. For example:

if (ierr > 0 1
call goof

or

if (ierr > 0
then

endif
call goof

if(condition) ret urn(value) statement

This special single-statement

if (condition) return(va1ue)

appears to be a statement of the form

if (condition) statement

However, return(va1ue) translates to two statements. MPPL handles this in a special
way in order to translate i t correctly to:

29

if (condition) then
functionname= (value)
return

endif

1.6.6 Case Selection Statement

The syntax for the select macro is:

select (expression)
case casenum:

default :

endselect
. . .

where

select(expression)

compares an integer expression to the values listed in the case statements that follow,
and executes at most one of the cases. The first case stated must immediately follow
the select statement. An optional default section can be executed if the expression
fails to match any of the cases.

case casenum :

labels the beginning of the statements to execute if the select expression matches the
case expression casenum. For casenum, the user must insert either an integer, a range
(two integers separated by a minus sign), or a comma-delimited list of integers and
ranges. The expression must end with a colon. For example:

case 7-10,12:

Statements may follow on the same line, after the colon. Multiple statements may be
separated by a colon, or appear on new lines.

default :

labels the beginning of the statements to execute if the select expression fails to
match any of the case values.

ends e le c t

30

marks the end of the case list. Here is an example of a complete select/case/default/endselect
construction:

s e l e c t (x)
case 0 : y = 1

case 1-4: y = 2
case 5,6: y = 3
case 7-10,12:

d e f a u l t : y = 0;x = 0
ends e 1 e c t

x = l

y = 4

A s e l e c t statement is translated either into a series of if statements or into
a computed go to. The latter is more efficient and so is used if there are enough
consecutive case values to make i t desirable. A few gaps in the sequence will be filled
in and the sequence need not start from one. A computed go to is a statement of the
type

go t o (lOOO,1OO1,1002, ...I i v a r

where control goes to label 1000 if ivar = 1, to label 1001 if ivar = 2, etc. While effi-
cient, such statements are opaque, annoying to modify, and have undefined behavior
if ivar is out of bounds. The select statement is both clearer and safer.

1.7 Sample Input File Showing Major MPPL Fea-
tures

#LOOPING CONSTRUCTS

def ine N 100
def ine M 20

c This subroutine shows t h e s i x d i f f e r e n t looping cons t ruc ts

t h e r e are f o u r kinds of DO l oops p lus WHILE and FOR loops.

TRADITIONAL LABELED DO LOOP

func t ion shoot (j

real xx (N) , y (MI , x, y

do 100 i = l , l O
i f (x (i) = 4) then

break # same as go t o next s t m t a f t e r 100

31

endif
i f (x (i) = 5 then

endif
next # same as go t o loop l a b e l (100)

y(2) = x (i > # t h i s gets executed on a next I00

DO LOOPS WITHOUT LABELS
next g e t s you t o next i t e r a t i o n ; break g e t s you out
SIMPLE LOOP

do i = l , M
i f (y (i) < 0) break
i f (y (i) >= i o . 1 next
y (i) = sq r t (iO . -y (i))

enddo

NESTED LOOPS

do i = 1,M
do j = 1 , N

i f (x . eq . 10) then #next i t e r a t i o n of inner loop

endif
i f (x . eq .20) then #next i t e r a t i o n of ou te r loop

endif
xx (j) = 8
i f (y (i) > x (j)) t h e n

e l s e

endif

next

next (2)

break

break(2)

end inner loop
ignores anything a f te r enddo

g e t out of inner loop

get out of i nne r loop

enddo j

enddo i

DO FOREVER
r epea t s fo reve r ; get out wi th break, r e t u r n , o r goto.

end ou te r loop

i = O
do

i = i + l

32

if(i > M) break
if(x(i) == 32)

next
x(i)=l/(x(i)-32)

enddo

WHILE/ENDWHILE
does a loop as long as the condition is satisfied

i = N
while(x(i)-x(i+l) > 1.e-5 & i <> 0) #&=.and. <>=.ne.

e ndwh i 1 e
i = i - l

DO/UNTIL
repeats until the condition is satisfied. Note that unlike
a while loop, the loop body is always done once

do
i = i - l
if(i = 0 I x(i) <= 0 .) break # I = .or.

until(x(i)-x(i+l) < 1.e-3)

FOR/ENDFOR
has three arguments separated by commas:
a) initialization statements to be executed before the
loop, b) the condition under which the loop is to be
executed while true, and c) the reinitialization
statements to be executed at the start of each loop after
the first before the condition is tested. The condition,
argument 2, must be present; other arguments are optional.

The following example is the same as do i=l,N;x(i)=i;enddo

for (i-1, i<=N, i=i+l)

endf or

FOR loops are good for things DO LOOPS can’t do:
the hard way to find the square root of two is:

x(i) = 1

for(t = l.,abs(t**2 - 2.) > 1.e-6, t=(t+2./t)/2.)

33

endf o r

FUNCTIONS
The r e t u r n statement can have an argument t o give t h e
re turned value.

r e t urn (t 1
end
real func t ion boxo(w,z)
r e a l w, z , a , b

I F STATEMENTS
There a r e two bas ic kinds of IF; t h i s rou t ine shows some
of t h e v a r i a t i o n s allowed.

IF(CONDITI0N) THEN . . .ENDIF

i f (a<b) #ok i f then is on next l i n e
then

c a l l odd(" th is i s a s t r i n g ; t r y i t ' ') ; re turn(b-a)
endif
i f (a <> b) then # i f a . ne . b

x = y
e l s e i f (b > a-1)

x=y/2 +
golf (tango, # i n +,-,*,comma,=, (,&, I , c a r e t , o r
bravo \ #backslash; backslash is de le ted
-1)
y="This i s a quoted s t r i n g " I 1 with a quote i n it\"

#ok i f you f o r g e t t h e then here
#statements continued i f they end

#. . .but not i n s ide s t r i n g s
e l s e i f (" t h e sky is blue >") then #or put i n t o be neat

e l s e

endif

howdy = 1

i f (a == w) c a l l junko

IF(CONDITION)STATEMENT/RETURN(VALUE)
is co r rec t even i f it expands t o more than one s ta tement .

i f (a > b)

i f (a<> b) re turn(gas1
b = b/2

34

return (bug)
end
program testme

SELECT/CASE/DEFAULT/ENDSELECT
You can put things after an ENDDO that are ignored.

real x(N)
do i=l,lO

enddo i --end of loop setting initial values for x

You can have multiple statements by separating them
with semicolons, even in the arguments of a FOR statement.

i O = O ; j O = M
for(i = io; j = j0 , j < 9 , i=i+l;j=j-1)

x(i) = i - 1

x(i> = y(j>
for(k=j, k<i+5 , k=k+l)

z(k) = y(j> + x(i>
endf or

endf or

SELECT allows you to test an integer variable against
different cases.

select (j)
case 5: y=5

case 6 : y=6
case 7,8,10:

y=8 ; 2=4
case 11-20,9:

z = 4

default :

ends elec t

call exit
end

y=o

#if j is 5 do these two statements

! if j is 6 do this one
! statements can follow on next line
! if j is 7, 8, or 10

! exclamation points are also comments

y=9 #if j is between 11 and 20
#inclusive or is 9

#do if j is none of the above

35

1.8 Examples of Advanced MPPL Macro Usage
The following examples show how to use the macro processor. Most MPPL users

will use macros only in the simple sense of using a name as a symbol for a constant
value, as in

define pi 3.14159

and as in the first example below, to enable the specification of variables to be confined
to just one place. Another common problem is conditional compilation, which we
cover in the second example. The third and fourth examples show a user inventing
language extensions.

1.8.1 Specifying a common block
This example shows how to specify a common block in one place, then use it as

needed in subroutines. We include an Immediate comment so that in the expanded
source the common block is marked with a comment.

define(Distributi0n-parameters, [
Immediate([c Distribution variables])

integer alpha,sigma,beta
common /cl/ alpha,sigma,beta

1)

subroutine x
Distribution-parameters

end
subroutine y

Distribution-parameters
. . .
end

1.8.2 Conditional compilation
Depending on whether or not the first define(DEBUG,) line is present or not, the

write statement is or is not compiled.

define (DEBUG,
ifdef ([DEBUG] , C

1)
write(6,lOO) x,y,z

36

1.8.3 Vector operations
The following example shows a mdcro that expands to a do-loop that adds the

last two arrays together and stores the result in the first array. The fourth argument
is the length of the arrays. I do not advocate this kind of programming but it can be
done.

define (Vector-add, [do i=l,$4 ; $l(i)=$2(i)+$3(i) ; enddol)
Vector-add(a,b,c,n)
Vector-add(d,e,f ,n)

1.8.4 Alphanumeric Labels
Some people enjoy the LRLTRAN feature of using names as labels. This can be done

with MPPL as long as we use a macro to change the names into statement labels.
The Label macro is recursive so that several labels can be specified at once. The
definition for Label can be read: if Label is called with an empty argument list, do
nothing. Otherwise, define the first argument ($1) to be a macro name standing for
the next available label (@l) and then apply Label to the rest of the arguments ($).
Thus Label chews its arguments from left to right. Note that the $1 is surrounded by
square brackets in case this name was used as a label already in another subroutine.

define Label ifelse($l, , , [define(C$lI ,@l)Label($-)I)

function boom(x)
c return 1, 0, -1 depending on the sign of x

integer boom
real x

if(x < 0) go to Negative
if(x > 0) go to Positive
return(0)

Positive return(1)
Negative return (-1

Label(Negative,Positive) #must appear before first use of names

end

Conversion to MPPL

Those users who want to convert a code to precompile with MPPL instead of
Precomp, but who do not plan to utilize the rest of Basis will have to make simple
changes in their cliches. If a cliche is called Abc change the statement cliche Abc
to define([UseAbcl , [and change the statement endcliche to 1) \. In the source
every use Abc must be replaced by Use (Abc) . Basis does not support dif and

37

.if directives. Replace them with combinations of the Basis macros ifelse and
define.

1.9 Migration to Fortran 90 syntax
In the years since MPPL was first written, the Fortran standard has advanced to

where the language processing features of MPPL can be replace by Fortran 90 syntax.

1.9.1 Command Line Options
A typical mppl-compile-load sequence is:

mppl mymacros mys0urce.m > my0ut.f
f77 my0ut.f -0 xec

Often, the input file mys0urce.m and the output file my0ut.f are significantly
different. All macros and real numbers have been processed and the output has been
indented to a consistent form.

A line similar to

mppl --langf90 --nomacro --nonumeric --nopretty -178
mys0urce.m > mysource1.m

can be used to convert only the language macros.
The --nolang command line option can then be used to prevent the future ex-

pansion of MPPL language constructs.

mppl --nolang mymacros mysource1.m > myout.f90
f90 myout.f90 -0 xec

1.9.2 Statement Processing
The --langf90 option will produce free-form output. All comments start with an
exclamation point (!). Embeded comments will replace the # with ! without creating
a new line. Continued lines end with an ampersand (&).

By default, f77 compatiable relation operators are used. --relational90 can be
used to generate symbols <, <=, ==, / =, >, and >=

1.9.3 Macros
include filename is process by mppl. filename is read by mppl and processed.
include 'If ilename" is process by f90. filename is ignored by mppl.

The Remark macro should be use instead of Immediate to insert comments from
macros. This will use the correct comment convention.

38

1.9.4 Loop Constructs
Indexed Loops

do i=l,n

enddo
. . .

This loop requires no conversion since it is valid f90.

do/unt il

do
. . .

until(condition)

do/unt il requires an explicit exit.

do

if (condition) exit
enddo

While Loops

while (condition)
. . .

endwhile

The endwhile is replaced with enddo.

while (condition)
. . .

enddo

For Loops

for(initial,condition,reinitial)

endf or
. . .

The initial, condition and reintial clauses are moved to the appropriate
parts of a while loop.

39

initial
do while (condition)

. . .
reinitial

endf or

1.9.5 Leaving and Skipping
next and next are repIace by cycle and exit.

user can manually convert this to:
The next 2, syntax is converted to use goto’s as with --langf77. A motivated

outer: do
do

exit outer
enddo

enddo outer

1.9.6 Case Selection Statement

select (expression)
case casenum:
. . .
default :
. . .
endsele c t

casenum is enclosed in parenthesis. default becomes case default.

select(expression)
case (casenum)
. . .
case default
. . .
ends e 1 e c t

40

	1 MPPL Reference Manual
	1.1 A More Productive Programming Language
	1.1.1 MPPL is a Fortran Preprocessor
	1.1.2 MPPL™s Three Stages
	1.1.3 Read the Sample Programs First

	1.2 Execution
	1.2.1 Availability
	1.2.2 Specifying Input and Output Files
	1.2.3 Specifying Options

	1.3 Token Processing
	1.3.1 Token Descriptions
	1.3.2 Processing Traditional Comments
	1.3.3 Free-Form Input

	1.4 Macro Processing
	1.4.1 Basic Features of the Macro Processor
	1.4.2 Macro Names
	1.4.3 Argument Collection
	1.4.4 Macro Expansion
	1.4.5 Macro Translation
	1.4.6 User-Defined Macros
	1.4.7 Built-in Macros
	1.4.8 Error Messages

	1.5 Statement Processing
	1.5.1 Cautions on the Use of Keywords
	1.5.2 Symbols for Logical Operators
	1.5.3 Multiple Statements on a Line

	1.6 Looping Constructs
	1.6.1 DoLoops
	1.6.2 While Loops
	1.6.3 Leaving and Skipping
	1.6.4 Module/Return Statements
	1.6.5 Conditional Statements

	1.6.6 Case Selection Statement

	1.7 Sample Input File Showing M.ajor MPPL Features
	1.8 Examples of Advanced MPPL Macro Usage
	1.8.1 Specifying a common block
	1.8.2 Conditional compilation
	1.8.3 Vector operations
	1.8.4 Alphanumeric Labels

	1.9 Migration to Fortran 90 syntax
	1.9.1 Command Line Options
	1.9.2 Statement Processing
	1.9.3 Macros
	1.9.4 Loop Constructs
	1.9.5 Leaving and Skipping
	1.9.6 Case Selection Statement

